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ABSTRACT. 

The in te rac t ion  of two l i k e  atoms i n  degenerate quantum states 

of the same energy and the  in t e rac t ion  of two unl ike atoms i n  

a r b i t r a r y  s t a t e s  i s  considered i n  the BreLt-Pauli approximation. 

For these non-resonant in te rac t ions  the ca lcu la t ion  of the 

2 
r e l a t i v i s t i c  long range in t e rac t ion  energy, through 

discussed with s p e c i f i c  allowance for  degeneracy i n  the in t e rac t ing  

atoms. 

important a r e  discussed. 

two spin degenerate atoms (G-0, SpO) is calculated through 

O(& ) , i s  

Possible interact ion8 where r e l a t i v i s t i c  e f f e c t s  may be 

As a spec i f i c  example the in t e rac t ion  of 

2 6  O(o(  /R ) 

(where R is  the interatomic separation),  The non-re la t iv i s t ic  

energy is  given by the usual London dispers ion energy which va r i e s  

a s  1/R6 while r e l a t i v i s t i c  e f f e c t s  introduce an in t e rac t ion  energy 

which va r i e s  a s  d /R . 2 3  
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Relaeivistic QI= re ta rda t ion  e f f e c t s  modify the i n t e r  

between atone and molecules appreciabay for Parge intermo 

separations,  K, and i n  generzl the c responding in 

for  these systems cannot be calculated ZKCU 

p o t e n t i a l  energy, It has been S~.QWZI t ha t  nodarately long range 

in t e rac t ion  energies can be c a B c u ~ a t e d E ~ 2  in the Brei t -Paul i  

approximation through @(ds) ( where 

By moderately long range we mean separations R s u f f i c i e n t l y  large 

t h a t  the charge d i s t r ibu t ions  O F  the t w o  in te rac t ing  molecules do 

not  overlap and ye t  not  large enough to invalve s t rong r e t a rda t ion  

e f f ec t s ,  R 4 '% Here 5 td beru i s  the reduced wave 

length cha rac t e r i s t i c  of allowed t r ans i t i ons  i n  the in t e rac t ing  

molecules (A& i s  the  c ~ r ~ e s p o n d i n g  exc i t a t ion  energy) For 

R - 5  or  R 7 % quantum electrodynamics of ten  must be used 

t o  ca lcu la te  accurate in t e rac t ion  energies 3 

In  t h i s  paper the in t e rac t ion  of ~ X Q  l i k e  atoms i n  degenerate 

quantum s t a t e s  of the same energy and the  in te rac t fon  O F  two unlike 

atoms i n  a r b i t r a r y  states is considered in the Breit-Pauli  

approximation. For these non-resonant in te rac t ions  the ca lcu la t ion  

of the r e l a t i v i s t i c  interactLon energy, through &d2) , is 
discussed , b r i e f l y  i n  general  and allowance is made spec i f i ca l ly  

for degeneracy i n  the in t e rac t ing  atoms. Then some poss ib le  

in te rac t ions  where r e l a t i v i s t i c  e f f e c t s  may be important are d iscussed .  



2 

These in te rac t ions  correspond t o  cases where the perman C 

dipole-dipole in te rac t ion  energy vanishes and the  lead t e r m  i n  the  

l/S-expansian of t he ' i n t e rac t ion  energy i s  given by an &hi3 

magnetic d i p 0  le -d ipo le in t e rac t  ion energy . These magnetic i n t e rac t  ion 

energies a re  also of importance because they do not appear t o  be 

retarded2j4 for very large values of R . A s  a 'specific example the  

in te rac t ion  of two spin degenerate (G-0, S + 0) atoms i s  calculated 

permanent 

through 8.(d,/R') . It is  found tha t  the most important non- 

r e l a t i v i s t i c  in te rac t ion  energy i s  the usual London dispersion energy 

which var ies  a s  1/R while the r e l a t i v i s t i c  in te rac t ion  energy 6 

contains a .term which var ies  a s  d 2 / R 3  . For the in te rac t ion  of two 

non-degenerate atoms (L = S = 0) 

those obtained previously . 
the r e s u l t s  of t h i s  paper rdduce t o  

I (a) 

I n  t h i s  work atomic un i t s  a r e  used; energy -&/ae, length *c, CL, 

where aC, i s  the Bohr radius.  The coordinate system f o r  the  

calculat ion of the in te rac t ion  energies i s  the same as t ha t  used i n  

refs. 1 and 5 .  For the  in te rac t ion  of two atoms a and b the 

non-re la t iv i s t ic  eigenfunctions %A) and %(e), respectively,  

represent s t a t e s  of sharp anguLar momentum (both spin S 

T L), 

and o r b i t a l  

a The set  of quantum numbersA, character iz ing the s t a t e  of atom 

is  given by 
... 
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where 

eci\liref-\for- 4 t r s ,  
Heri$l .IC: denotes the remaining quant’um 

specification of the states of the atom, 

S 

3 

The non-relativistic 

where Hia) is the non-relativistic Hamiltonian for the atom. In 

A 
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7 
r e l a t i v i s t i c  Hamiltonian (with nuclei  held fixed)6 i s  given by 

c 

where He is the usual 

(2-1) 

non- re l a t iv i s t i c  Hami nian for  the  system. 

The r e l a t i v i s t i c  correct ion,  

magnetic in te rac t ions  between the electrons i n  the system and has  

Hrel , includes terms which allow for 

8 the form 

( la ,  1 )  
The various terms i n  Hrel have the following s ignif icance : 

€ILL corresponds t o  the in t e rac t ion  of the o r b i t a l  magnetic moments 

of the e lec t rons  i n  the system; 

the spin magnetic moments of the electrons;  HSL represents  the  

in t e rac t ion  between the sp in  magnetic moments and the o r b i t a l  

HSs gives the in t e rac t ion  betweev 

magnetic qrrments of the e lec t rons  i n  the sjrstem; 

cor rec t ion  due t o  the  va r i a t ion  of e lec t ron  mass with ve loc i ty  and 

€$ 

H is a r e l a t i v i s t i c  
P 

appears t o  have no simple in t e rp re t a t ion .  

1 (a] 2#9 J 1oJ11 The "multipole expansion" of the  Brei t -Paul i  Hamiltonian 

is used for  the ca lcu la t ion  

through @'(& . 
of long range in t e rac t ion  energies  

I f  the charge d i s t r ibu t ions  of the intera:ct ing 
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atoms a and b do not overlap" then one can s 

and 

I n  Eq. (2-3) 

the expansion 

e lec  t r o s t a t  i c  

the H6ka) a r e  the r e l a t i v i s t i c  Hamiltonians of the i so la ted  atom 

Ve 

coef f ic ien ts  Vm represent: the interact ion5 of various 

multipoles of atom a with those of atom b . In  Eq. (2-4) 

is  the non-re la t iv i s t ic  i n t e rac t ion  poten t ia l  and 

is  the r e l a t i v i s t i c  i n t e rac t ion  po ten t i a l  corresponding a and HB 

to the r e l a t i v i s t i c  correct ion 6  he ekpansion coef f ic ien ts  Hem 
represent  the in te rac t ion  

multipoles of atom a with those of atom b . General expressions 

for the Hqm are  derived i n  r e f .  9 and it should be noted tha t  

in+ 

of various o r b i t a l  and spin magnetic 

.." .,m = E  = o  
HsL, 1 - HssIl - HSS,2 p , m > ~  = %,eo c 

The non-zero multipole expansion coef f ic ien ts ,  through @( $'R3) 

a re  of spec i f i c  i n t e r e s t  i n  t h i s  paper and a r e  discussed b r i e f l y  



i n  the Appendix (see a l s o  r e f .  l ( a ) ) .  

Fr om s e m i  -e l a s s  i c a  1 cons idera f ions (' one wou Id  expect t h a t  

M ( o > ~  -d 
z two atoms a and b with magnetic dipoles - 

and PI(&)= -6 [L'b) f 2  Stb)] respect ively,  would have a z -  
magnetic dipole-dipole in te rac t ion  Hamiltonian 

for 
6 9 3  

The r e l a t i v i s t i c  multipole expansion coef f ic ien ts  

6 = LL, SS, and SL, can be wr i t ten  

H 

i n  the form (see Appendix) 

where c3 corresponds t o  t h e  semi-classical  Hamiltonian and Che 

x,3 represent  cor rec t ion  terms; thus 

The expansion coefgicients  c3 for cs LL,SS,Sk represent  

respect ively,  the magnetic o rb i t -o rb i t ,  spin-spin and sp in-orb i t  

dipole in te rac t ions  between atoms a and b 
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(b 1 

Consider the in t e rac t ion  of two atoms a and b i n  the  

quantum skates A'' and B'  respect ively.  I n  the  Breit-Paul 

approxitbtion the r e l a t i v i s t i c  Schrodinger equation for  the diatomic; 
11 

molecule a - b i s  given by 

1 This equation can be solved , fo r  moderately large R , for  the 

ener g y f! through a l l  oli-ders i n  

F i r s t  the non- re l a t iv i s t i c  problem 

2 
and through f i r s t  order i n  o( . 'e 

(2-10) 

i s  solved by per turbat ion theory using 6 

a s  the unperturbed Hamiltonian and the  multipole expansion of V 

a s  the  perturbation. This gives a 1 / R  expansion for  the non- 

e 

r e l a t i v i s t i c  wave function and energy 

azr 

(2-11) 

(2-12) 



Here K corresponds t o  the  good quantum numbers for the  combined , 

two atom system and the ch CK) / R" -re la t i v i s  t i c  

in te rac t ion  energies which include 

terms representing the  d i r e c t  in te rac t ion  between permanent e lec t ro-  

s t a t i c  multipole moments of the in te rac t ing  atoms. The zero-th 

5 dispersion forces a s  w e l l  as 

8 
L 

Y 

13 
order wave functions, must be chosen t o  diagonalize 

appropriate perturbation Hamiltonians (see below). Having obtained 

qn expression for the non-re la t iv i s t ic  wave function it i s  easy t o  

show 

t hr ough 8 Cd') 
e 14 

1/R expansion for the energy tha t  one can obtain a 

where 

(2- 13) 

and 
f?n m-1 

cq a r e  the r d J a t i v i s t i c  correct ions t o  the energy of 

the  i so la ted  atom and the Ct/, A 1 / Q"" a re  the &dz) 
r e l a t i v i s t i c  in te rac t ion  energies. 

Combining the above r e s u l t s  the in te rac t ion  energy (including 
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both r e l a t i v i s t i c  and non-re la t iv i s t ic  terms) i s  given by 
m 

fbb(K) = /)n L 'C&p /R*  =? 4- 6 (2-16) 

K 
[&bCd., i s  the r e l a t i v i s t i c  in te rac t ion  energy a r i s ing  from the 

in t e rac t  ion of magnet i c  

expansion of HY . 
a r i s e  from coef f ic ien ts  

multipoles which occur i n  the multipole 

The lead terms i n  the expansisn of &,lK1 

C h l K )  t ha t  a r e  f i r s t  order i n  Ve and 

L zero-th order  i n  d 

order i n  dL and zero-th order i n  Ve . 
the in te rac t ion  energy through 8(d+L/R3) i s  given by 

or from coef f ic ien ts  w%dKl t ha t  a r e  f i r s t  

It i s  easy t o  show tha t  

15 

(2-18) 

where 

(2-19) 

(2- 20) 
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and 

The coe f f i c i en t s  C+lK) and W4AR) , for  /h 773 

involve16 the  with values of For the in t e rac t ion  

of two non-degenerate (Z'=S'=O) atoms it i s  easy t o  show t h a t  the  

in t e rac t ion  energy through @ ~ ~ ' / ~ ' )  is zero, I n  t h i s  case 

1 the in t e rac t ion  energy has the form 

(2-23) 

and t h i s  r e s u l t  has been discussed i n  d e t a i l  i n  r e f .  I. 

The l imi ta t ions  on the use c f the  Breit-Pauli  approximation 

17 are discussed i n  d e t a i l  i n  r e f s .  1 and 7. Of par t icu lar  importance 

i s  the f a c t  t h a t  i n  general t he  in t e rac t ion  energies calculated 

using t h i s  approximation a r e  accurate  only fo r  f?<% 
example1 for  the in t e rac t ion  of non-degenerate atoms the Breit-Pauli 

approximation f a i l s  t o  represent the in t e rac t ion  accurately for  

Far 

R > O.b% It should be noted however t h a t  i n  the  non-resonant 
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in te rac t ions  discussed here the energy corresponding t o  the  in te rac t ion  

of permanent e l e c t r o s t a t i c  or magnetic dipoles appears t o  be va l id  2,4 

even f o r  large R . 
Construction of the  Zero-th Order Wavefunctions 

I n  order t o  ac tua l ly  ca lcu la te  t he  in te rac t ion  energy for a 

spec i f i c  problem one must know the zero-th order wave functions &':' 
These gre  constructed from the solut ions t o  the  non-re la t iv i s t ic  

Schrodinger equation for the  i so la ted  atoms a and b i n  the quantum 

states A '  and B' respectively.  Here we w i l l  l i m i t  the  discussion 

t o  ncm-resonan t interact ions.  

Instead of using eigenfunctions of LZ(a) and S,(a). t o  
( 0 )  

construct  the 

purposes t o  choose instead orthonormal eiBenfunctions of J (a) and 

it w i l l  o f ten  be more convenient18 for  our 
2 

Here 3: s C&"S., * - J s i  J and where, from 

Eq. (1-39, 
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oper non-re la t iv i s t ic  zero-th order wave 

€or the long range in te rac t ion  of two l i k e  atoms 

sane energy or two unl ike atoms i n  a r b i t r a r y  states (non-resonan 

(2-26) 

The coe f f i c i en t s  (Qa&2;N$) qb1&,J;iMM;)I s' 
t o  diagonalize appropriate per turbat ion Hamiltonians ( i - e ?  the 13 

d e s i r e d  V and ) subject  t o  the condition t h a t  m 

(2-27) 

3. 

atomic in te rac t ions .  

Let the  two in t e rac t ing  atoms a and b have e l e c t r o s t a t i c  

dipole moments/_U[Q) and /U[bjand - magnetic dipole moments M(a) and 

- M(b3 respectively.  

would expect t h a t  the in t e rac t ion  energy through &da/R3)would be 

Then from semi-classical  considera 
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where 

Her  e i s  the usual  permanent e l e c t r o s t a t i c  dipole-dipole 

in te rac t ion  energy and is  the  permanent magnetic 
20 dipole-dipole in t e rac t ion  energy t h a t  one would expect from Eq. (2-8 

Using Z q 0  (3-1) and (2-18) the in t e rac t ion  energy through 8 (dZ/R9 

can be wr i t ten  as 

mh er e 

( 3 - 4 )  

The in t e rac t ion  energy fN .e tk )  is  a non-classical  correct ion t o  

the semi-classical  r e s u l t  of Eq. (3-1). 

-I: The in t e rac t ion  energy through 6( fka /R3)  i s  iden t i ca l ly  

equal t o  the semi-classical  result, 
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Proof:  Define %he in tegra ls  

I 
where J f  and J can have the values IL,+ 

a a 
and simiParPy fo r  atom b 

I$ andl om are  discussed i n  the Appendix. 

The spherical  tensor operators J; 9 

using ehe commutator 1 
2 1  r e l a t ions  given by E q s .  (A-2) ( A - 4 )  i t  i s  easy t o  show t ha t  

and s iwiQarly fo r  atom b 

Prom Eqs ,  (2619)-(2-21) and ( 2 - 2 6 )  and the  expressions for the 

m u l t i p o l e  expansion coef f ic ien ts  given i n  the Appendix one can show 

(K) are  S g N , @ .  (K), W2(K) and . W YLL, 1 tha t  the coef f ic ien ts  

expressible a s  a sum of terms each of which contains a t  l e a s t  one of 

the in tegra ls  given by Eq. (3-8). Hence (K) vanishes and one 

obtains the r e s u l t  of Eq'. ( 3 - 6 ) *  

N.C. 

!de conclude from theorem I tha t  although the r e l a t i v i s t i c  

and HsL yield muEtipole expansfon coef f ic ien ts  %L Hamiltonfanos 

Qf .)and 8[&f%?~ there a re  no r e l a t i v i s t i c  in te rac t ion  

energies af the same w d e r  j n  1h. 
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Prom Eqs. (3-1) and (3-6) it  is  clear t h a t  for  the re la t ivis t ic  

in t e rac t ion  energies t o  be important the non- re l a t iv i s t i c  i n t e rac t i an  

tr)/R3 must vanish leaving 

I n  Sec. 4 various possible  in te rac t ions  are discussed which lead t o  

an in t e rac t ion  energy of the  form given by"Eq. (3-9) and the case of 

worked Out e x p l i c i t l y  through Q c ~ W )  . 

-IS: The in t e rac t ion  energies tha t  a r e  f i r s t  order i n  V 

and zero-t& order i n  d2 or f i r s t  order i n  o$ 

e 
2 and zero-th order in 

V a r e  iden t i ca l ly  zero when averaged over the o r ig ina l  zero-th 

order degenerate states . 
e 

22 

Proof: 

matrix elements of the type 

The in te rac t ion  energies  of i n t e r e s t  i n  the theorem invo'lve 

(3-10) 

where T is  a per turbat ion operator which can be wr i t ten  

s ymb o l i c  a 1 ly 

T= C A ~ ~ , + I ~ , ~ I  xgz~ J-G -@* * (3-11) 

(see Appendix) by 

1,co 1 3 0  - 
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Here the  3% are i r reducib le  spher ica l  tensor  operators23 with 

c t  t o  the  t o t a l  angular.Wmentum Q a) , of atom a 
- 

and s imi l a r ly  fo r  atom b , while A(1 
Summing (T>' over a l l  the  zero-th order degeneraqe states and 

using Eqs. (2-26) and (3-10) gives 

(3-12) 

T h i s  expression can be s implif ied by using the  Wigner-Bckart 

theorem 23' 24 and introducing the  Clebsch-Gordan coe f f i c i en t  C , 

(3-13) 

23,24 I 

where (-8:,s,'] &t ch)//A,,s,) i s  the reduced matrix element 

for  the  set of tensors  T,*& and simglarly for  atom b . 
Applying the Wigner Eckart theorem tosEq. (3-12) and using the 
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orthogonality condition cc3;1,3> W;,o,M$) = G,* 
h; 

it i s  easy t o  show tha t  <77K= 0 and hence theorem 11. 

As a r e s u l t  of theorem I1 when the i n  ac t ion  energy 

i s  averaged over a l l  o r ig ina l  degeneracies the r e l a t i v i s t i c  

i n t e rac t  ion ener gy through o l d a )  w i l l  have a lead t e r m  given by 

the o(dL/g') energy d i s c u s s e d  previously and the non-re la t iv ib t ic  1 

in te rac t ion  energy w i l l  have a lead t e r m  given by the London dispersion 

energy (see Sec. 4 for an example). 

- .. . . -  
4 .  Examples 

For the in te rac t ion  of degenerate atoms the lead t e r m  i n  the 

l/R-expansion of the non-re la t iv i s t ic  in te rac t ion  energy i s  usually 

the 1%R e l e c t r o s t a t i c  quadrapole-quadrapole energy. However, i n  

some cases, the non-re la t iv i s t ic  in te rac t ion  energy can have lower 

order t e r m s  i n  P/R. For example for  the in te rac t ion  of two hydrogen 

atoms, i n  s t a t e s  with pr inc ip le  quantum number n=2 , the  in te rac t ion  

energy has a n l / R  e l e c t r o s t a t i c  dipole-dipole t e r m  (see r e f .  1 2  and 

5 

3 

footnote 21). I n  general, then, i f  the  non-re la t iv i s t ic  in te rac t ion  

energy c9LK)IR3 
re  l a  t i v i  s t i c  corr  ec t ions 424,k5a)/R3 
L: or 5 equal zero C7(K) vanishes and from the se lec t ion  r u l e s  

fo r  the  r e l a t i v i s t i c  multipole expansion coef f ic ien ts  

vanishes there i s  a poss ib i l i t y  tha t  the 

may be important. For 

23 

one can select in te rac t ions  for which the r e l a t i v i s t i c  
25 

in te rac t ion  energies of &dL/f)are not zero. Some possible in te rac t ions  
i 0) 

a r e  given i n  Table 'I. [note <go)lqL,3\% )=oif La or L,, equal zero]. 
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Table I 

'Some Possible I 

w,,!,.? - - 

0 

0 

l o  

0 

# O  

5: 

+ o  0 

0 0 

- . _ - _  _ _  - - . . _ _ .  . I. - "I_ - 
The In te rac t ion  of Two Spin Depenerate Atoms 

0 

A s  a spec i f ic  example consider the in te rac t ion  of t w o  atoms a 

and b i n  the  states A '  and B' defined by 

I n  t h i s  sec t ion  the  in te rac t ion  energy €or t h i s  problem, ~ L ' K >  

i s  calculated through 06cz-/RL~ ., The mathematical techniques used, 

which include appl icat ions of the Wigner-Eckart theorem, have been 

discussed i n  d e t a i l  previously 

only br ie f ly .  

and w i l l  be mentioned here 

I 

I 
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27 
The non-re la t iv i s t ic  zero-th order wave functions have the form 

where 

(4-33 

Since the degeneracy i n  the problem i s  characterized by the spin 

project ion quantum numbers of the in te rac t ing  atoms it cannot be 

and ATSO removed by the spin f r ee  perturbations 

these spin f ree  perturbations a r e  diagonal with respect t o  the y;;’” 
for  any choice of the expansion coef f ic ien ts  

%L Hp 

consis tent  with Eq. ( 4 - 3 ) ,  Using Eq. ( 4 - 3 )  i t  i s  easy t o  show tha t  

the spin f r ee  in te rac t ion  energies cm(Kj/g” and d L w ~ m ( K ’ / / ? ~  

f o r  6 = LL, p, and D, a r e  independent o f  the quantum number 

and for  convenience we write 

K 

Through Q C ‘k6) the non-r e l a t i v i s  t i c  

dispersion energy c&/eL 28 by the Landsn 

in te rac t ion  energy i s  given 

where 
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( 4 - 6 )  , 

where 

i s  the exc i t a t ion  energy corresponding t o  t h i s  t r ans i t i on .  The 

in t eg ra l s  i n  Eq. ( 4 - 6 )  a r e  independent of the choice of M i  
- S ' $ r &  5 s' 
numbers A '  and B' happen t o  correspond t o  degenerate ground s t a t e s  

the coe f f i c i en t  C6 i s  not necessar i ly  negative and the London 

dispers ion energy i s  not necessar i ly  a t t r ac t ive .  

D€*tR,!,S') = G&& b5'1--& 6 &o) S f )  

and 

Unless the states labeled by the quanctum 

The only non-zero contr ibut ions t o  the in t e rac t ion  energy, 

through @(da/R6) from the spin f r ee  r e l a t i v i s t i c  Hamiltonians 

a r e  given by 

and 

The m b s t  important contr ibut ion f r o m  HLLg Hp and 5 t o  the 

in t e rac t ion  energy is  given by dA t"/,,+ /R* where 1,29 
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i s  pos t t ive  

This is  not necessar i ly  

'LL, 4 For the in t e rac t ion  of tyo ground s ta te  atoms 

giving rise t o  a repuls ive  in t e rac t ion  energy. 

the  case for an in t e rac t ion  involving a degenerate atom. The 

coe f f i c i en t s  corresponding t o  the Q(~* /P  6l i n t e rac t  ion energies 

i n  Eqs. (4-7) and (4-8) are given by 

(4-10) 

(4-11) 

The e x p l i c i t  expressions for  t he  coe f f i c i en t s  given by Eqs. (4-10) 

and (4-11) a r e  e s s e n t i a l l y  i d e n t i c a l  t o  those for  t he  in t e rac t ion  of 

two non-degenerate atoms and s ince they give r i se  t o  in t e rac t ion  

energies of $cdal smaller than the London energy we do not 

consider them fur ther  here. 

. .  
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It can be shown by s t r a igh t f  

involving the Wigner-Eckart theor 

€is, , makes no contr ibut ion t o  t h  

The spin-spin Hamiltoni 

non-re l a  t i v i  s t i c  zero - t h  or d e r  wave functions, X'O' , for  a r b i t r a r y  

chqices of the expansion coef f ic ien ts  

These coe f f i c i en t s  are chosen t o  s a t i s f y  Eq. ( 4 - 3 )  t o  diagonalize 

( ~ ~ t f l ' ~ ( P , ( 6 ' ~  I (&'& >. 
the (spin-dipole) - (spin-d ipole  in te rac t ion  

I t . c a n  be sh t h a t  the zero-th o ons calculated i n  

t h i s  manner ensure t h a t  the spin-spin H 

with respec t  t o  the ( Y K [ O )  ( a t  least through o<-laigb) ). It 

should be pointed out t h a t  the diagonalization of 

Hss , i s  diagonal 

can be Hss, 3 

i s  expressed i n  terms of i r reducib le  
* I  

carried out exact ly  s ince 

spher ica l  sp in  tensors, 

i n t eg ra l s  over Gkbse sp in  tensors  can be calculated exac t lv  23 , I 

(4-13)  
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s. (4-2), (A-5)  i n t o  Eq. (4-12) and 4- 13) 

one obtains  
I 

(4-14) 

(K) i s  non-aero and gives r ise  t o  a r e l a t i v i s t i c  wss, 3 I n  general 

(spin-dipole)-(spin-dipole) i n t e rac t ion  energy d2 w*s,3 ( W R 3 .  
The contribution of HSS t o  the in t e rac t ion  energy through o(d"/R'j 
is  given by 

where 

(4-16) 

The coe f f i c i en t  Wss,6 

the  in t e rac t ion  of two non-degenerate atoms and s ince it i s  of 

8(~zl smaller than the  London dispersion energy we do not consider 

is  similar i n  s t ruc tu re  t o  the  r e s u l t  for 

it fur ther  here. 
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Comb i n  i n  g 

expression for 

f? 

the  r e s u l t s  of Eqs. (4-5)-(4-15) we obtain a 

the  in te rac t ion  energy for the  spin degenerate problem 

- 
R3 

(4-15) 

Her e WL =c w<G and s ince the @Cdz/Rbj energy i s  of order 
6 

5 x 

what follows. * 

smaller than the London energy w e  s h a l l  neglect3' it i n  

In  order t o  obtain numerical values for the  coef f ic ien ts  in 

Eq. (4-15) consider the in te rac t ion  of two doublet atoms (3: 5 Si=&). 

s, 3 
The proper zero-th order  wave functions which diagonalize 

(R) a r e  given by and the corresponding coef f ic ien ts  
3 

wss, 3 

(4-16) 

(4- 17) 
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e vanishing of the c a c t  

of the  hydrogen molecule has z 

for the  other coef f ic ien ts  i n  Eq. (4-15) e x p l i c i t  

expressions for the  wave functions of the in t e rac t ing  atoms a re  
33 

d e  These coef f ic ien ts  a r e  r ead i ly  or estimated 

of two ground s t a t e  hydrogen atoms. for the i n t e r a c t  

in te rac t ion  energies a r e  

The r e su l t i ng  

(4-18) 

The r e l a t i v i s t i c  in te rac t ion  energies given i n  Eqs. (4-18) a re  

compared with the Lo on dispersion energy, u g  = --6.SO/R6 

i n  Fig. I where r a t i o s  of the form ~ b & ~ ~ / ~ ~  

the interatomic separation R . For the in te rac t ions  represented 

a re  plot ted against  

by the 3c po ten t i a l  energy curves the r e l a t i v i s t i c  in te rac t ion  

energy, which is dominated by the (spin-dipole) - (spin-dipole) energy, 

i s  an appreciable f rac t ion  of the London dispersion energy for 

re la t ively34 small values of R . For example for the ’Ze curve 
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the  r e l a t i v i s t i c  i n t e rac t ion  energy 

a t  Rh22& while for  the 'E+, - states 

a r e  10 per cent  of the  London energ . When the  sum 

of the  three  '2 po ten t i a l  energy c 

(spin-dipole) i n t e rac t ion  energy vanis 

The r e l a t i v i s t i c  i n t e rac t ion  ener 

t h i s  paper may be of importance i n  a t o  

They a r e  a l s o  important because they appear not t o  be retarded 

a t  large intermolecular separations and therefore  w i l l  sometimes 

be the  lead t e r m  i n  the 1/R expansion of the very long range 

in t e rac t ion  energy e 

greement with Theorem IT. 

'1 discussed i n  

t e r i n g  experiments . 35 
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Appendix. 

I n  t h i s  Appendix we give e x p l i c i t  expressions for  the expansion 

coef f ic ien ts  ‘LX,m J %S,m J HSL,m and Vntg fdr  

t h a t  are required i n  Secs. 3 and 4. These a re  a l s o  given i n  r e f .  l ( a )  

but appear here i n  a much s implif ied form. The multipole expansion 

coef f ic ien ts  a r e  expressed a s  products of i r reducib le  spher ica l  tensor 

operators of the atoms a and b Most of these operators (see 

below) are defined i n  r e f .  l<a)- I n  what follows the space and spin 

coordinates of an e lec t ron  i n  atom a referred t o  the nucleus of 

atom a a re  designated by Ik and sk respect ively.  .We a l s o  make 

use of a permutation operator Pab which parmates a l l  indices  

associated with atom a with the corresponding indices  of atom b ; 

It i s  convenient t o  def ine the following t enso r i a l  operators;  

/)br 

and s imi l a r ly  for  atom b. T4e t e n s w s  (A) and the  

other spher ica l  tensors  used i n  t h i s  paper are defined i n  rk f .  l(a). 

The following commutation r e l a t i o n s  for  801~ce of the ten.pr.oria1 

operators a r e  usefu l  
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(A-4)  

Non-zero Multipole Expansian Coefficients through 6 WR31 
I 
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